Track2a-3: Emergence of Global Network Property based on Multi–agent Voting Model

Kosuke Shinoda: National Defense Academy, Japan Yutaka Matsuo: Advanced Industrial Science and Technology, Japan Hideyuki Nakashima: Future University-Hakodate, Japan

Our model generates 4 types of network

What's purpose of this model?

How to design is this model?

Outlines

- Our research Background
- Simulation model of Network Growing based on Multi-agent model
 - Problem setting & simulation steps.
 - Network centrality
- Results and overall properties
- Conclusions and Future Works

Background

- We aim to examine the application to social network system such as information recommendation, but, a few studies have been conducted into the nature of local behavior and global network properties.
 - Agent Simulations with network topology
 - Those studies have revealed that the **overall performance** is markedly influenced by the network structure among agents.
- We have to model considering with **node's goal** on network
 - Network generating models(ex. Scale-Free, Small-World)
 - Those defined a node as objects who has little autonomy.
 - · A growing network model from the agent views.
 - How local interaction and agreement among agents consists difference network properties
 - · The preliminary analysis of an actual social network

Simulation Model

- Problem Setting of network generation:
 - Each agent is considered as a node
 - A new edge is generated through agreements among agents, as recorded through a voting.
 - The newly invented edge increases the respective utilities of some agents.
 - This process is iterated and the network becomes more connected
- When agents vote, they use a centrality for a utility functions, and seek to increase own centrality.
 - Degree, closeness, betweenness, pagerank

Network Centrality

- Centrality represents the **importance of nodes**. The most popular centralities are as following;
 - 1. Degree:
 - Degree means *how many acquaintances* a node has. This value is presented the number of edges to other nodes.
 - 2. <u>Closeness</u>:
 - This captures *how close a node is to all* the other one. This value is calculated by the minimum distance of a node to all other nodes.

3. Betweenness:

• Betweenness indicates that a node is in *a favored position of information flow*. It measures the number of all the shortest paths that go through the nodes.

4. PageRank:

- PageRank was proposed as *a measure of the importance of a Web* Page. We use PageRank because of its familiarity to computer science researcher.
- These Centrality are used as a proxy for utility, which is to be maximized.

RESULTS and OVERALL PROPERTYE

Figure of Networks

Note: The position and distance of nodes imply nothing, illustrated by graphviz.

N=100, <k>=2.1. c=200

Degree Distributions

N=1000, <k>=2.1, c=200

What caused these network topologies to emerge?

- Each agent interests only in edges which is one end, so that newly edge is selected at random.
- <u>Closeness</u>
 - The edge **between a hub and an isolated node** gets the **most votes**, which makes a hub more connected and stronger. This insights that closeness is important factor in scale-free network, such as airline network.

Betweenness

 To be **big betweenness** need a **Large shortest path**, so that network tends to have large *L* and *D*. This means that betweenness has some relations with a network has large *L* and *D*, such as highway, train route.

PageRank

 PageRank makes a dense connected component with numerous edge; the number of the connected component increases very slowly. Such a situation is sometimes observed in real-world social networks such as OTAKU groups.

Future Works and Conclusion

Discussion

- Some elements were neglected in our model
 - Edges are **monotonously increasing**.
 - It is necessary to consider the **dissolving the relations**.
 - Centrality measures require whole network topology.
 - In this research, we use network-centric centrality, however we need to use ego-centric centrality to construct network growing model from the agent view.
 - Homogeneous agents
 - Some actual networks consist of **heterogeneous agents**.
 - Negotiation process of agreements is vote **among all gents**
 - c.f. Network Gaming is agreement between two nodes.

Conclusion

- We proposed an model of growing network.
 - A network was generated by voting among agents
 - Each agent behaves to increase own utility on network.
- Different centrality measures engender different networks:
 - Degree: a random network
 - Closeness : a scale-free network
 - Betweenness: a regular graph
 - PageRank: a complete graph
- This research provides insights toward global properties and local decision from the multi-agent perspectives.

Future Works

- We can use our model in various kinds of multiagent simulation, especially of social systems
 - Recommendation system in academic conference.
 - Region network design; transport, material flow.
 - The evaluation of team-formation, such as football, basketball.
- The stainability of networked society.
 - culture, knowledge accumulated, economy, etc.

Process of network growing(N=20)

The growth process of Degree

N=100, c=200

The growth process of Closeness

N=100, c=200

The mechanism with closeness centrality

- In case of four characteristic candidate edges
 - 1) between a hub node and a connected node
 - 2) between two connected nodes,
 - 3) between a connected node and an isolated node,
 - 4) between two isolated nodes
- All agents want to be selected a link belongs a node that has a high closeness centrality.

Expected Value of closeness centrality								
	а	b	С	d	е	f	g	score
1)	3	3	3	2	3	1	1.5	15
2)	0.5	0.5	0.5	0.5	0	1	1.5	3
3)	2	2	2	3	2	1	1.5	12
4)	0.5	0.5	0.5	0.5	1	3	1.5	3

The growth process of Betweenness

N=100, c=200

The mechanism with betweenness centrality

- The mainly type of candidate edges:
 - between two connected nodes,
 - between a connected node(has some betweeness) and an isolated node
 - betweenn a connected node(has no betweenness) and an isolated node
- A node's betweenness raise when geodesic path pass through its node increases.

The growth process of PageRank

N=100, c=200,

The mechanism with PageRank

- Characteristic candidate edges:
 - 1) between two nodes 2) node to isolated node 3) between two isolated nodes
- When the PageRank adopts agent's utility:
 - The ratio of transition from the isolated node is out: 100% and in: 15%
 - When a node connects to existing network, its node get higher postion.
 - An isolated nodes' position are decreased by the decrease of the number of isolation nodes.

